|
Twitter
|
Facebook
|
Google+
|
VKontakte
|
LinkedIn
|
 
 
International Journal of Innovation and Scientific Research
ISSN: 2351-8014
 
 
Friday 19 April 2024

About IJISR

News

Submission

Downloads

Archives

Custom Search

Contact

  • Contact us
  • Newsletter:

Connect with IJISR

   
 
 
 

Petrography of muddy sandstones ferruginous of Bingerville’s Miocene


[ Pétrographie des muddy sandstones ferrugineux du Miocène de Bingerville ]

Volume 24, Issue 2, June 2016, Pages 347–358

 Petrography of muddy sandstones ferruginous of Bingerville’s Miocene

Fori Yao Paul Assale1 and Aka Kouamé2

1 Laboratoire de Géologie Marine et de Sédimentologie, Université Félix Houphouët-Boigny (UFHB), Abidjan, Côte d’Ivoire
2 Université Félix Houphouët Boigny, UFR des Sciences de la Terre et des Ressources, Abidjan, Côte d'Ivoire

Original language: French

Copyright © 2016 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract


The petrography of Miocene ferruginous muddy sandstones of Bingerville permitted to understand the transformation of muddy sands to muddy sandstones. The muddy sands lithification starts during the rainy seasons which distribute the iron hydroxides in the kaolin of muddy sands. During the evaporation of pore waters during the arid seasons, the iron hydroxides lose their water. These hydroxides are transformed into iron oxides supporting the transformation of muddy sands to muddy sandstones thanks to ferruginous cement. This cement derives from the total oxidation of the ochreous matrix. This matrix is a mixture of kaolinite and iron oxides. These muddy sandstones are quartz wackes with ferruginous cement. There are always nano-vacuums between the grains of quartz and ferruginous cement which surrounds them. These nano-vacuums are the spaces left after the evaporation of pore waters which surrounded the grains of quartz. Quartz of quartz wackes are transformed into iron oxides through their weakness zones. That is supported by the lot of iron oxides in the sedimentation environment. The muddy sands lithification of Miocene took place at Holocene thanks to their exposure in subaerial environment and/or aerial.

Author Keywords: petrography, quartz wackes, ferruginous cement and nano-vacuums.


Abstract: (french)


La pétrographie des muddy sandstones ferrugineux du Miocène de Bingerville a permis de comprendre l’évolution de la grésification des sables argileux en muddy sandstones. La grésification commence pendant les saisons des pluies qui distribuent les hydroxydes de fer dans les argiles kaoliniques des sables argileux. Lors de l’évaporation des eaux interstitielles, pendant les saisons sèches, les hydroxydes de fer perdent leurs eaux. Ces hydroxydes se transforment en oxydes de fer favorisant ainsi la lithification des sables silto-argileux en muddy sandstones grâce au ciment ferrugineux. Ce ciment dérive de l’oxydation totale de la matrice ocreuse. Cette matrice est un mélange de kaolinite et d’oxydes de fer. Ces muddy sandstones sont des quartz wackes à ciment ferrugineux. Il existe toujours des nano-vides entre les grains de quartz et le ciment ferrugineux qui les entoure. Ces nano-vides sont les espaces laissés après l’évaporation des eaux interstitielles qui entouraient les grains de quartz. Certains quartz des quartz wackes se transforment en oxydes de fer à travers leurs zones de faiblesse. Cela est favorisé par la forte concentration d’oxydes de fer dans le milieu de sédimentation. La grésification des sables silto-argileux du Miocène s’est déroulée à l’Holocène grâce à leur exposition en milieu subaérien et/ou aérien.

Author Keywords: pétrographie, quartz wackes, ciment ferrugineux et nano-vides.


How to Cite this Article


Fori Yao Paul Assale and Aka Kouamé, “Petrography of muddy sandstones ferruginous of Bingerville’s Miocene,” International Journal of Innovation and Scientific Research, vol. 24, no. 2, pp. 347–358, June 2016.