|
Twitter
|
Facebook
|
Google+
|
VKontakte
|
LinkedIn
|
 
 
International Journal of Innovation and Scientific Research
ISSN: 2351-8014
 
 
Wednesday 23 May 2018

About IJISR

News

Submission

Downloads

Archives

Custom Search

Contact

Connect with IJISR

  Call for Papers (May 2018)  
 
 
 

AN IMPROVEMENT CLASSIFICATION ALGORITHM UTILIZING STREAMING DATA


Volume 32, Issue 2, September 2017, Pages 345–353

 AN IMPROVEMENT CLASSIFICATION ALGORITHM UTILIZING STREAMING DATA

Hind Ra'ad Ibraheem and Enas Mohammed Hussein

Original language: English

Received 15 May 2017

Copyright © 2017 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract


The data stream has recently emerged in response to the continuous data problem. Stream data is usually in vast volume, changing dynamically, possibly infinite, and containing multi-dimensional features. The attention towards data stream mining is increasing as regards to its presence in wide range of real-world applications, such as e-commerce, banking, sensor data and telecommunication records. Similar to data mining, data stream mining includes classification, clustering, frequent pattern mining etc. techniques; the special focus of this paper is on classification methods invented to handle data streams. Performance of data stream classification is measuring by involving processing speed, memory and accuracy. Also, a classification algorithm must meet several requirements in order to work with the assumptions and be suitable for learning from data streams so studying purely theoretical advantages of algorithms is certainly useful and enables new developments. Here we present a comprehensive survey of the state-of-the-art data stream mining algorithms with a focus on classification because of its ubiquitous usage. It identifies mining constraints, proposes a general model for data stream mining, and depicts the relationship between traditional data mining and data stream mining. In this paper, we propose a new streaming data classification algorithm based on Hoeffding tree algorithm called Fast Decision Tree Algorithm (FDTA) as an improvement method to classify stream data and compared between them according to the three measures which are classification accuracy, memory space and execution time.

Author Keywords: Data Stream, Data Stream mining, Data Stream classification, Hoeffding tree algorithm, FDTA.


How to Cite this Article


Hind Ra'ad Ibraheem and Enas Mohammed Hussein, “AN IMPROVEMENT CLASSIFICATION ALGORITHM UTILIZING STREAMING DATA,” International Journal of Innovation and Scientific Research, vol. 32, no. 2, pp. 345–353, September 2017.